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Abstract—The Oxford Robotics Institute (ORI) has completed
the SAX demonstrator project with 141 hours and 3700 kilome-
tres of driving data across urban, semi-urban, motorway, rural,
and off-road driving scenarios, resulting in over 200 terabytes
of sensor logs with different sensors and tens of thousands of
labels for various autonomy-critical driving tasks. In the process,
we have developed our research portfolio in robust sensing and
scene understanding, including motion estimation, localisation,
object detection, and explanation generation. This has resulted
in about 30 academic publications. The dataset is in the process
of finalisation and peer-review and should be released to the
public later in 2022. In this technical report, we summarise our
findings and describe our project’s evolution in terms of our
initial proposal and the broader programme.

I. INTRODUCTION

This technical report describes how we have demonstrated
world-leading research in mobile autonomy (including percep-
tion, localisation, and mapping) in challenging on-road and
off-road driving scenarios addressing fundamental technical
issues to overcome critical barriers to assurance and regulation
for large-scale deployments of autonomous systems. This
document is meant to accompany [1], where we gave an
overview of the whole project aim and scope.

This report proceeds as follows. We describe our output and
progress over the course of the project. We do this explicitly
against the initial objectives and planned work packages
and with reference to the Assuring Autonomy International
Programme’s body of knowledge, which we originally pro-
posed contributing to in meeting the call criteria. Detail on a
publication-level is front-heavy, and thereafter we provide rich
links between sections, avoiding repetition.

II. RESEARCH OBJECTIVES

Our proposal was built around the following research ob-
jectives:
O1: To robustly and reliably sense and interpret the environ-
ment in severe and changing weather conditions, overcoming
the limitations of classic sensing modalities.
O2: To continuously assess and optimise the performance of
perception as well as navigation methods.
O3: To demonstrate a system capable of explaining in non-
engineering and human terms what a robot/vehicle has seen
and how it has influenced its decision making.
In the following sections we demonstrate how we have met
these objectives.
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III. WORK PACKAGES

Our work was arranged in five major work packages. WP1
meets O1, WP2 meets O2, and WP3 meets O3.

A. WP1: Alternative Sensing

Harsh weather and lighting conditions in particular pose
non-trivial challenges to autonomous vehicle development,
above all with the usage of traditional sensing systems, such
as cameras and lidars. In this area, we investigated the usage
of uncommon sensing modalities and configurations (such
as scanning radars and audio) as well as external weather
and map services – both for the vehicle’s motion estimation
and surface classification, mostly leveraging deep learning
approaches.

1) WP1.A Radar-based Motion Estimation and Lo-
calisation: Here, we showed how Frequency-Modulated
Continuous-Wave (FMCW) scanning radar can be a reliable
sensor for motion estimation and localisation.

In the area of motion estimation, in [2] we demonstrated
that readily-available odometry pipelines can be enhanced
through introspection techniques to make them more robust
in challenging, outdoor scenarios (see Sec. III-B1). In [3]
we proposed a lightweight, learnt method for radar odometry
based in a two-stage correlation operation. In [4], we used a

In the area of localisation, in [5], [6] we investigated
the potential of radar for place recognition and in [7] we
combined this with metric pose estimation in order to build
a complete, radar-only localisation pipeline. Moreover, we
followed these works in [8], [9] by proposing an unsupervised
training of the place recognition network, requiring no place
labels. In [10], [11], [12], [13], we explored how external
services (linking to Sec. III-A3), e.g. readily-available satellite
imagery, can be used as map proxy for radar sensing.

2) WP1.B Auditory Sensing (stretch): Here, we showed that
audio can be a valuable sensor for assessing road surfaces
– e.g. gravel, tarmac – and their status – e.g. dry, wet. In
particular, in [14], we used audio to classify drivable surfaces
in an outdoor environment, specifically grass and gravel. Here,
the classification pipeline is used to cheaply create a vast
amount of labels needed to train a supervised radar surface
segmentation pipeline by fusing odometry information.

3) WP1.C Leveraging External Services: Here, we showed
that ready-available satellite images can be very valuable as
cheap map proxies for range sensors. In [10], we used a
multi-stage approach to convert first a satellite image and its
proximal radar scan into a synthetic radar image centred on



the satellite data but resembling the radar scan; secondly, we
register the two radar image, the live one and the synthetic,
though a correlation approach. In [11], [13] we simplify the
training procedure by relaxing the need of accurate ground-
truth offsets between the satellite and radar images. In [12] we
converted both LiDAR and satellite images into collections
of 2D points for solving both place recognition and metric
localisation between satellite imagery and LiDAR sensors.

4) WP1.D Data Collection: We carried out an extensive
data collection; the aim was to cover as many scenarios
and weather conditions, ranging from urban data in central
London to off-road data in Scotland Highlands. Alongside
the dataset, we produce copious labels for semantic scene
understanding, object detection and odometry; please refer
to Sec. IV-C for more details. Nevertheless, no dataset can
comprehend all possible scenarios a deployed system could
possibly face, so we investigated techniques for synthesising
new data that can be used for bolstering robustness to unseen
situations [15], [16] (see Sec. V-C for more details).

B. WP2: Performance Assessment
Here, we have shown that is possible to predict and estimate

the performance of a robot system both in the case of motion
estimation/localisation and perception.

1) WP2.A Predicting Localisation Performance: Embed-
ding a form of estimation of performance and confidence
in the odometry and localisation pipelines can bolster their
robustness and prevent critical failures. We showed it in [2],
where the eigenvectors used by the matching approach lead to
a confidence score that can be used for rejecting expected
failure cases. In [8], [9] we analysed how distributional
similarity as a proxy for localisation confidence can increase
the system performance. Moreover, in [4], we showed that
filtering matches through a motion model before computing
the motion estimation is greatly beneficial.

Finally, alongside the dataset (c.f. Sec. III-A4), we released
odometry and localisation ground truth for future research in
performance assessment of localisation.

2) WP2.B Estimating Model Confidence: The ability of a
model to learn a mapping from input data to outputs, e.g.
objects in the scene or odometry prediction, is not sufficient
if it is not accompanied by the estimation of its confidence.
We explicitly discussed this topic in [17] in the context of
semantic segmentation, where the segmentation network has
been augmented with a second task network that is trained
in an unsupervised fashion to predict the pixel-wise model
confidence on the output. The model confidence can then be
exploited to reject unconfident predictions, improving model
introspection.

Moreover, alongside the dataset (c.f. Sec. III-A4), we release
plenty of semantic segmentation ground-truth masks for future
research. For more details, refer to Sec. IV-C.

C. WP3: Causal Explanation
1) WP3.A Scenario-based Requirement Analysis: The safe

deployment of autonomous vehicles (AVs) in real-world sce-
narios requires them to be accountable and trustworthy.

Hence, it is necessary to explore the impact of explanations
that provide information about an AV’s behaviour—in essence
explaining what a vehicle has “seen”, done and might do
in a given scenario. In order to unpack the meanings and
properties of explanations, we conducted a thorough com-
prehensive review of explanations generally in autonomous
driving [18]. We formed a categorisation of the explanations
studied in the driving literature, and then we explored how
the explanations have been considered in the different AV
operations (e.g., perception, localisation, planning, vehicle and
control, and system management). We also provided technical
and regulatory recommendations for more effective AV
explainability.

In [19], we studied the different explanations types iden-
tified from our survey and applied them in different driving
scenarios obtained in the real-world. A major objective of the
work was to identify scenarios where explanations could be
primarily useful. Driving scenarios were defined by a mix of
road topology, road rules/traffic control signs, and vehicle ac-
tions with respect to other road participants. The intelligibility
of explanations was evaluated based on the degree to which
an explanation improves a person’s understanding of an AV’s
operation after performing a set of tasks. Subsequently, in [20],
we assessed the human’s perceptions of AVs in the presence
of causal and non-causal explanations. While results suggested
that explanations could be useful for enhancing understanding
of driving behaviours, they might not necessarily lead to a
higher calibration of trust in AVs. We took a step further to
obtain experts’ thoughts on explainability, we conducted a CHI
workshop [21] where we brought experts in the field to share
their thoughts on the current state-of-the-art contributions on
explainability in autonomous physical systems. Conclusions
reached through this workshop aligned with the results from
our previous studies.

2) WP3.B Semantic Scene Representation: Semantics can
be a very powerful representation of the sensor’s data, since
it contains high-level information that is robust to change in
appearance.

We showed results for semantic segmentation on visual data
featuring out-of-distribution content in [17] (see Sec. III-B2)
where the semantic result is accompanied by the relative model
confidence.

In [22] we exploit object level, semantic information to map
a city environment for LiDAR localisation achieving compet-
itive accuracy results with very compressed representations.

Moreover, we showed radar’s potential in semantic scene
understanding: [23] uses vision and LiDAR as ground truth
for urban segmentation, [24] uses a LiDAR map to learn a
traversability map from single radar images and [14] uses
audio to supervise segmentation maps of drivable surfaces in
an outdoor environment (see Sec. III-A2).

Tangentially, we exploited semantic information in [16] as
input for image synthesis to produce aligned realistic data for
training more robust semantic segmenters.

Finally, we have annotated the delivered dataset with plenty
of semantic masks in all sceneries. For more details, refer to



Sec. IV-C.
3) WP3.C Learning and Inference for Causal Explanation:

Having constructed a clear understanding of the theories, ap-
plications and practices around explainable AI in autonomous
driving (Sec. III-C1), we explored different ways to build
interpretable models for specific driving tasks. In [25], we
designed algorithms to generate factual and counterfactual
explanations for the predictions of vehicle collision risk
models learned on the planar time to collision (TTC) metrics.
Results indicated that the AV developers can potentially apply
this explainer tool for model debugging purposes.

We also conducted a comparative study on the different ex-
planation techniques for deep convolutional neural networks
(CNN). In [26], we compared the contextual importance and
utility (CIU) algorithm with other commonly used techniques.
CIU indicated better performances in effectively occluding the
part of the test images that were not important for the deep
CNN model. A user study conducted following this study also
verified this result.

IV. MILESTONES AND DELIVERABLES

We use milestones and deliverables to give a broader view
of the above work packages. MS1/D1 relates to O1 and O3.
MS2/D2 relates to O3. MS2/D3 relates to O1. MS3/D4 relates
to O3.

A. MS1/D1: Taxonomy of challenging scenarios

The project investigated three types of driving scenarios:
off-road; semi-urban and motorway; and dense urban scenar-
ios. We collected data from different places using the same
robotic platform and sensors. This will allow users of the
resulting dataset to test and evaluate their algorithms and
methods in a variety of challenging scenarios—from the city
centre of London to the Highlands of Scotland.

• Hounslow Hall Estate, in Buckinghamshire, England.
This site features three routes, mainly off-road, of in-
creasing difficulty even under fair conditions.

• Ardverikie Estate, in the Scottish Highlands. This iso-
lated estate features gravel and rock tracks and sandy
beaches in highly variable lighting and weather condi-
tions.

• The New Forest, a large area of unenclosed pasture land
and forest in Southern England. Along the spectrum of
driving difficulty, this site presents easy surfaces (public
roads) and low traffic.

• The Oxford Ring-Road, in Oxfordshire. This site fea-
tures driving at high-speed (up to 70 mph) in dense traffic
around a network of A-, B-, and M-type motorways.

Furthermore, through a user study, we investigated a taxon-
omy of events including: normative, near-misses, collisions,
and emergency events.

Our research themes contributing to success in these out-
comes are Sec. III-A4, Sec. III-C1.

B. MS2/D2: Taxonomy of explanations for key stakeholders

We have considered explanation dimensions, types of ex-
planations, and stakeholders.

For explanation dimensions, we consider causes filters,
content type, model dependence, interactivity, system type, and
scope.

For types of explanations, we consider causal explanations,
contrastiveness and non-contrastiveness, as well as counterfac-
tuals.

In terms of stakeholders, we consider end-users (passen-
gers, pedestrians, pedestrians with reduced mobility, other road
participants such as cyclists, and auxiliary drivers), technicians
and engineers, as well as regulators and insurers.

Our research themes contributing to success in these out-
comes are Sec. III-C3.

C. MS2/D3: Dataset of unconventional sensor

We selected a full sensor suite, capable of covering a wide
range of application:

• A forward-facing stereo camera and a set of three two-
lens stereo cameras facing forwards and backwards;

• A set of five single-beam, 2D lasers and a single, roof-
mounted, multiple-beam 3D laser;

• A roof-mounted scanning radar;
• A bumper-mounted automotive radar;
• An Inertial Navigation System (INS);
• The internal Controller Area Network (CAN) bus signals;
• Four omnidirectional boom microphones on the two front

and two – optional – back wheel arches;
• An in-cabin monocular camera for recording the driver’s

behaviour;
• An in-cabin, optional microphone to complement the in-

cabin video under professional driving instruction.
Alongside, we provide a set of ground-truth annotations for

a variety of tasks:
• Bounding box object positions for camera as well as for

LiDAR (where we provide 3D boxes) and radar;
• Pixel-wise segmentation, with object classes dictated by

the different scenarios, with corresponding CAN sig-
nalling;

• Event-based audio-visual sequences, where we uniquely
provide synchronised audio and video, using in-cabin
recording of a professional driving instructor (only for
urban scenario);

• Position tracking, using a Leica Viva TS16 Total Station
for precise millimetre-accurate position ground truth.

Our research themes contributing to success in these out-
comes are Sec. III-A1, Sec. III-A4.

V. BODY OF KNOWLEDGE

In our contribution to the BoK, we addressed the Assurance
Objective on Explanability. Here, we have considered expla-
nations to be useful for:

• Justification of decisions taken by the vehicle,
c.f. Sec. V-F;



• Control, detecting and mitigating performance drops,
c.f. Sec. V-E;

• Improvements by predicting, circumventing, and ex-
plaining performance issues, c.f. Sec. V-G;

• Discovery by singling out factors which have a major im-
pact on the performance of learnt models, c.f. Secs. V-C
and V-D.

Feeding into all these streams are sensing and understanding
requirements, c.f. Secs. V-A and V-B.

A. 2.2.1.1: Defining Sensing requirements

Our work in this area considers that different combinations
of scene and possible threat will require different sensor
payloads and even unusual sensors.

A diverse dataset Our dataset contains a broad combination
of scenes – urban, rural and off-road – and hazards – mixed
driving surfaces, adverse weather conditions, and other actors’
presence Our publication output in this area includes [1],
[27]. This work arises from O1 and O3 and was aimed at
satisfying Secs. III-A4, IV-A and IV-C.

FMCW scanning radar We showed how AVs could utilise
radar independently from other sensors for low-level autonomy
tasks, ranging from odometry and localisation to scene under-
standing to path planning. Our publication output in this area
includes [9], [13], [8], [12], [24], [14], [11], [5], [6], [10],
[7], [23], [2]. This work arises from O1 and was aimed at
satisfying Secs. III-A1 to III-A3.

Audio Audio has the advantage to be inherently invariant
to the scene illumination, although it contains only very
punctual information. Our publication output in this area
includes [14]. This work arises from O1 and was aimed at
satisfying Sec. III-A2.

CAN CAN contain critical information for several tasks,
which can treat them either as sensory data – e.g. for driver
identification – or as control signals – e.g. for training
behavioural-cloning algorithms. Our publication output in this
area includes [27]. This work arises from O2 and was aimed
at satisfying Sec. III-B1.

External services We challenge the definition of a sensor
by including services provided by external operators, partic-
ularly satellite imagery. Our publication output in this area
includes [12], [10], [11], [13]. This work arises from O1 and
was aimed at satisfying Sec. III-A3.

B. 2.2.1.2: Defining Understanding requirements

Our work in this area focuses on structured but data-
driven algorithms for localisation, object detection, and plan-
ning/control.

Radar for robust understanding We find this sensor
to be critical in inclement weather and at high-speed in
motorway driving scenarios. Our publication output in this
area includes [9], [13], [8], [12], [24], [14], [11], [5], [6],
[10], [7], [23], [2]. This work arises from O1 and was aimed
at satisfying Secs. III-A1 to III-A3.

Implicit and explicit task understanding We consider
lower-level autonomy-enabling tasks which require implicit

understanding as well as higher-level autonomy-enabling tasks
which provide explicit understanding of the world. Our pub-
lication output in this area includes [9], [4], [3], [2], [5], [8],
[6], [23], [24], [14]. This work arises from O1 and O3 and
was aimed at satisfying Secs. III-B1 and III-B2.

Cross-modal understanding There are certain scenarios in
which one modality will perform best. There will be some
scenarios in which a range of choices are available for which
technology to deploy. Our publication output in this area
includes [2], [23], [24]. This work arises from O1 and O2
and was aimed at satisfying Secs. III-A1 and III-B1.

C. 2.3: Implementing requirements using ML

Here, our work has focused on lack of enough data or labels
and the cost of labelling.

Generative approaches We have found that generative
approaches provide a way to synthesise new training data
that the AV never experienced during the data collection.
Our publication output in this area includes [15], [16]. This
work arises from O1 and was aimed at satisfying Secs. III-A4
and III-C2.

Weakly-supervised learning Our work has exploited aug-
mented available labels by either projecting one sensor on
top of another or retaining labels through time, significantly
increasing the number of available annotations. Our publica-
tion output in this area includes [2], [23], [14], [24]. This
work arises from O1 and was aimed at satisfying Secs. III-A1
and III-A4.

Unsupervised Learning We have found that unsupervised
learning has allowed us to train with much more raw sensor
scans, mitigating entirely the need for ground truth or pseudo-
labels, and exposing the network during training to much more
realistic data. Our publication output in this area includes [11],
[8], [13], [9]. This work arises from O1 and was aimed at
satisfying Secs. III-A1 and III-A4.

D. 2.3.1: Sufficiency of training

Our work in this area has focused on the sources of
training data and types of annotations which are required for
deployment in more diverse scenarios.

Dataset overview Our key contribution is the deployment
of one platform in five places ranging from on-road to off-
road environments. Our focus for data capture revolves around
unusual sensing modalities, mixed driving surfaces, varied
operational domains, and adverse weather conditions.

Annotation We have focused our annotation effort on
bounding box object positions, pixel-wise segmentation, event-
based audio-visual sequences, and position tracking.

Our publication output in this area includes [1], [27]. This
work arises from O1 and O3 and was aimed at satisfy-
ing Secs. III-A4, IV-A and IV-C.

E. 2.6: Handling change during operation

Here, we focus on weather conditions, lighting, dynamic
objects and agents, and internal settings and parameters.

Adapting to change Where it is still desirable to use camera
and laser, our work has developed processing strategies which



can understand, represent, and effect change on the sensor
stream can be powerfully applied to “normalise” sensor data
for better autonomous performance. Our publication output in
this area includes [28], [15].

Learning from change Changes, being inevitable, should
be maximally exploited as a rich source of information for
learned systems. Therefore, these learned systems should be
structured such that they are able to incorporate signals arising
from change. Our publication output in this area includes [9],
[8].

Identifying change We assert that even if change cannot be
handled satisfactorily, it is still hugely beneficial for the system
to understand that change has occurred. It is furthermore
important for the interpretability of autonomous driving tasks
that the change can be localised within the sensor observation.
Our publication output in this area includes [17].

Representing change in training datasets It is crucial
that publicly available datasets for autonomous driving feature
change. This is true when developing learned systems as well
as for more classical autonomy stacks. These changes should
capture typical changes as well as more unusual deviations
in scene appearance. Our publication output in this area
includes [1], [27].

To embrace or to reject change? When actively addressed,
change in the environment as scanned by sensors may be
embraced or rejected for more robust system performance
(e.g. as for selective segmentation, see above). Our publication
output in the area of embracing change includes [7] and in the
area of rejecting change includes [29], [4], [3], [30].

This work arises from primarily O2 but also O1 and was
aimed at satisfying Secs. III-A1 and III-B1.

F. 2.8: Explainability
Here, we focus on explanations as key for building trust in

autonomous systems such as autonomous vehicles (AVs) and
identify different types of explanations in challenging driving
scenarios and stakeholders for which explanations are relevant.

Need for Explainability, the needs for explanations dif-
fer across different stakeholders. While end-users, in-vehicle
participants, among others would demand clear explanations
in natural language, developers might prefer more technical
explanations that would facilitate easy. debugging of their
systems. Ultimately, the goal is to build to safe AVs that
are transparent, accountable, and trustworthy. Our publication
output in this area includes [18], [21].

Standards and Regulations we have identified several
standards related to explainability in AVs. Our publication
output in this area includes [18].

Stakeholders in AV Explainability we identified three
groups of stakeholders, in particular: End-Users (i.e. pas-
sengers, auxiliary driver, pedestrians and other road users),
Developers and Technicians (i.e. AV developers and auto-
mobile technicians) and Regulators and Insurers (i.e. system
auditors, regulators, accident investigators and insurers). Our
publication output in this area includes [18].

Explanations Categorisation We provide a categorisation
of explanations based on the different methodologies identified

in literature (unvalidated guidelines, empirically derived and
psychologically constructed). We also identified the different
explanation dimensions in AVs. Our publication output in this
area includes [18].

Generating Explanations We consider explanations in
visual and natural language formats and have developed nat-
ural language explanations for collision risks models. Our
publication output in this area includes [25], [26].

Evaluating Explanations We proposed an interpretable,
tree-based data representation approach to assess accountabil-
ity in autonomous driving through explanations which refer-
ence to AV’s actions, observations, and road rules along with
a user study. Our publication output in this area includes [19],
[20].

Activities Description We have identified multiple types
and dimensions of explanations as well as the requirements
for different stakeholders. Our publication output in this area
includes [18].

This work arises from O3 and was aimed at satisfy-
ing Secs. III-C1 and III-C3.

G. 3: Understanding and controlling deviations from required
behaviour

We focus in this area on distributional shifts from training
data, poorly modelled vehicle kinematics, sensor artefacts,
environmental ambiguity, and scene distractors.

Vehicle modelling We have focused here on the fidelity of
motion estimation being suspect to incorrect data association
on a frame-by-frame basis. This is tied to environmental
ambiguity and sensor artefacts. Our publication output in this
area includes [4], [6].

Sensor artefacts Here, sensor failure modes and other
noises perturb the vehicle’s measurements which are processed
by autonomy-enabling systems in order to make predictions
and inform behaviour. Our publication output in this area
includes [5], [9], [8].

Environmental ambiguity Specific to the way in which the
sensor technology works, different parts of the environment
may have very similar “appearance” which can be confusing
for downstream tasks, leading to errors in scene understanding.
Our publication output in this area includes [2], [17].

Scene distractors Perturbation of the sensor stream and
therefore deviation from ideal performance in autonomy en-
abling tasks and autonomous behaviour itself is also possible
due to the presence of unaccounted for and uncontrollable
objects and actors in the scene. Our publication output in this
area includes [29], [3].

This work arises from primarily O2 but also O1 and was
aimed at satisfying Secs. III-A1 and III-B1.

VI. CONCLUSION

In this document, we discussed the results we achieved
during the SAX project in world-leading research in mobile
autonomy. We addressed fundamental questions to overcome
critical barriers to assurance and regulation for large-scale
deployments of autonomous systems in challenging on-road
and off-road driving scenarios.



In particular, we present a universal view of AV sensing
requirements and how uncommon sensing modalities can be
suitable for overcoming challenging operational scenarios,
showing that scanning radar, despite its age as a technology,
is a tool that can rival vision and laser in scene understanding
across all crucial autonomy-enabling tasks. We present an
overview of AV training requirements and approaches to tackle
the lack of specific sensing combinations or labels, and we
released a vast dataset in a variety of scenarios and condi-
tions, comprising a full sensor suite and manually-annotated
labels for odometry, localisation, semantic segmentation and
object detection. Change for autonomous vehicle operation is
unavoidable, predictable to an extent but often unpredictable,
a rich source of training information, crucial to be properly
represented in training data, often correctable during operation
or if not at least detectable. We identify different types of
explanations in challenging driving scenarios. Moreover, we
characterise several dimensions for explanations and identify
different stakeholders for which explanations are relevant.
Furthermore, we develop methods and provide guidance for
generating explanations using vehicle perception and action
data in dynamic driving scenarios.
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